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A little about me CMS

Detector

Highschool in Des Moines, Iowa

Majored in Physics at the College of St. Benedict in
Minnesota

 Graduated 2013

Ph.D. in experimental particle physics from the
University of Notre Dame in Indiana

 Graduated 2018

Now: Postdoc at Fermilab

* Working on CMS experiment, including searches for

dark matter and optimizing CMS reco i de
CMS

Physicist
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Brief history of particle physics
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The Discovery ot the Electron

J.J. Thomson (1897)
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Advanced the idea that cathode rays were a stream of

small pieces of matter. 1906 Nobel Price of Physics
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Plum Pudding Model of the Atom

J.J. Thomson (1904)

Sphere of

positive charge N Electron
N /
+ /
— -
4 +
A -
3 - 3 Electrons were embedded in a
positively charged atom like
i — plums in a pudding

Copyright © 2005 Pearson Prentice Hall, Inc.
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Rutherford Scattering

* Beam of alpha (a) particles were directed at a thin gold foil
* A fluorescent screen was used to detect the angle 8 at which the
particles scattered off the gold atoms in the foil

Flash of

Microscope
Fluorescent

- 0 screen
> . ........ .
Scattering
angle
Polonium Gold
sample foil

E. Rutherford (1909)



Rutherford Scattering
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What do you expect to
happen to the pool

balls?

A. Pass through the beach
balls without getting
deflected

B. Scatter back towards the
left

C. Most particles will pass
through, some will scatter
back towards the left
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Rutherford Scattering

* One in 8000 o particles were deflected back towards the source

 This showed that the positive matter in atoms was concentrated
in an incredibly small volume (10-13cm)
 (Gave birth to the idea of the nuclear atom

Flash of
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Fluorescent
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E. Rutherford (1909)




Rutherford Scattering

* One in 8000 o particles were deflected back towards the source

e This showed that the positive matter in atoms was concentrated
in an incredibly small volume (10-13cm)
 Gave birth to the idea of the nuclear atom

“[t wag quite the mogt incredible event that hag
ever happened to me in my life. [t wag almost ag
incredible ag if you fired a 15-inch chell at 3
piece of tisgue paper and it came back and hit
you.

Flash of
Microscope
Fluorescent

% 0 screen
o— B ... ... .
Scattering
angle

Polonium Gold
sample foil

E. Rutherford (1909)




Planetary Model of the Atom
Ernest Rutherford (1911)

the nucleus

 Atoms are made up of a central

positive charge surrounded by a

electrons
orbits

cloud of orbiting electrons
« All atoms are made up of

protons, neutrons, and electrons

Proton (+) Neutron (0) Electron (-)




Planetary Model of the Atom
Ernest Rutherford (1911)

Different Kinds of Basic Matter

orbits

the nucleus

Hislory af Elemenlary Farlicles

electrons

|
100 =

E | 7
- |/

|/
- Earth
L AIr
Fire

Water
1 1 1

/
Sulfur, Saht ,/

Mercury

1 1
Chamical

Eleme nls/”

/
/

/

/
/
/

/
Electron
P.r:)lun .

[
/

Subatomic
Particles

Quarks
Leptons

1000 O
HC

1000 1500

1800 1900 1950

A

1980 2000 2020

4

 Atoms are made up of a central
positive charge surrounded by a
cloud of orbiting electrons

« All atoms are made up of

protons, neutrons, and electrons

o4

Proton (+)  Neutron (0) Electron (-)




An abundance of particles
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Proton (+)  Neutron (0) Electron (-)




An abundance of particles

e 1947 to 1964: More and more “elementary” particles discovered

e®» @

» Solution: all of these hadrons are different combinations of even smaller particles,

called quarks
@

Proton (+)  Neutron (0) Electron (-)
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e 1947 to 1964: More and more “elementary” particles discovered
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» Solution: all of these hadrons are different combinations of even smaller particles,
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An abundance of particles

e 1947 to 1964: More and more “elementary” particles discovered

e®» @

» Solution: all of these hadrons are different combinations of even smaller particles,
called quarks

Proton (+)  Neutron (0) Electron (-)
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Earth’s building blocks

Standard Model of Elementary Particles

e All ordinary matter is made from
up quarks, down quarks, and

upJ

-4.7 KV
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dowu

=0 51 Me\"Tef

e

elactron

LEPTONS




Three generations

Standard Model of Elementary Particles e All ordinary matter is made from

three generations of matter
flermions) up quarks, down quarks, and
| ] N
o [[32.2 MoV =128 G =173.1 BV electI’ODS
- @ |9 |- @ e There are three copies, or
| up 1 charm I top \ p y
— generations, of quarks and leptons
9 |9 |-© » Same properties, only heavier
L down JU strangeJ . bottom \

L | || -1 1
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electron == muon | tau
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LEPTONS



Neutrinos
Standard Model of Elementary Particles

three generations of matter
(fermions)
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Neutrinos

Standard Model of Elementary Particles

three generations of matter

(lermions)
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e All ordinary matter is made from
up quarks, down quarks, and
electrons

e There are three copies, or
generations, of quarks and leptons
e Same properties, only heavier

* Leptons also include neutrinos, one
for each generation

All of these are matter particles, or
fermions



Antimatter

Tass = 0.511 Mavic?
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Antimatter

Tass = 0.511 MeVv/ic? mass =+ C.511 MeV/z*
o+

€

positron

&

electron

charge » -1 cheroe = #1

spin > /2 spin - 1,2




Antimatter

« Antimatter is exactly the same as matter except one attribute is flipped:
the charge

Tass = 0.511 MeVv/ic? mass =+ C.511 MeV/z*
o+

charge » -1 cherge = +1
spin > (2 Q spin - 1/2 9
electron L positron

» A particle and its antiparticle can annihilate

into a pair of light particles (photons)




Antimatter

« Antimatter is exactly the same as matter except one attribute is flipped:
the charge

Tass = 0.511 MeVv/ic? mass =+ C.511 MeV/z*
+

charge » -1 cherge = +1
spin > /2 9 spin = 1/2 g
electron L positron

* A particle and its antiparticle can annihilate o \\g\‘\sphoton
e / /l/\/lj)hoton

into a pair of light particles (photons)




How do we make antimatter?

At the antimatter factory of course!




How do we make antimatter?

Positrons from Potassium-40: your body Antiprotons from hlgh energy
produces about 180 positrons per hour! L
collisions of a proton beam on a

fixed target of metal

p+p—->p+tptp+p

NS




Force carriers
Standard Model of Elementary Particles

three generations of matter
(fermions)
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Force carriers
Standard Model of Elementary Particles

three genearations of matter Interactions J force carriers
(fermions) (bosons)
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Force carriers

Standard Model of Elementary Particles « The other group of particles in

three generations of matter Interactions J force carriers
| e . hosons) the Standard Model are bosons
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Force carriers
Standard Model of Elementary Particles

three generations of matter Interactions / force carriers
{termions) (bosons)
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e The other group of particles in
the Standard Model are bosons

Strong force




Force carriers

Standard Model of Elementary Particles

three generations of matter
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e The other group of particles in
the Standard Model are bosons

Strong force

Electromagnetic force




Force carriers

Standard Model of Elementary Particles + The other group of particles in

three generations of matter Interactions / force carriers
. o] | (bosons) the Standard Model are bosons
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Force carriers

Standard Model of Elementary Particles + The other group of particles in

three generations of matter Interactions / force carriers
. o] | (bosoha) the Standard Model are bosons
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How do Matter Particles Interact?

« Particles interact without touching!

Iron filings “feel” the Earth attracts the Moon.

presence of a magnet
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The Unseen Effect

- "

- e Even though we cannot see the
W (V(ﬁ ' basketball, we see the effect
‘ throwing it has on the two people.
ASed
\ = ‘ > e All interactions which affect matter

particles are due to the exchange of

force carrier particles

e What we think of as forces, are the
effects of the force carrier particles

¥ ‘ > 4 on matter particles
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Color Charge

» Quarks and gluons are color-charged particles™
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Color Charge

» Quarks and gluons are color-charged particles™

-

* "Color charge" has nothing to do with QUAKKS

—
the visible colors, it is just a convenient

naming convention for a mathematical “hntiRed ™= “ _Anti-Green - “_AntiBlueF= ANTI-QUARKS
system e

ANTI-COLOR
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Color Charge

QUARKS CARRY A

* Quarks and gluons are color-charged particles™ coror

ANTIFQUARKS CARRY AN
ANTI-COLOR

GLUONS CARRY A
- COLOR AND AN
' ANTI-COLOR

COLOKR I

* "Color charge" has nothing to do with QUARKS

the visible colors, it is just a convenient

naming convention for a mathematical —FAntiRed == “_Anti-Green - ’ AntiBluel=  ANTI-QUARKS
system -

ANTI-COLOR
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Color Charge

» Quarks and gluons are color-charged particles™

QUARKS CARRY A
coLorR

* Quarks constantly change their color charges as they

ANTIFQUARKS CARRY AN
ANTI-COLOR

GLUONS CARRY A
- COLOR AND AN
ANTl—COLO?

QUARKS

exchange gluons with other quarks.

* This exchange creates a very strong color force field that
binds the quarks together.

» Color-charged particles cannot be found individually. The
color-charged quarks are confined in groups with other
quarks. These composites are color neutrjiCOLOR I

-

* "Color charge" has nothing to do with

--

the visible colors, it is just a convenient

naming convention for a mathematical “Anti:Red == “_Anti-Green - AntiBlue™= ANTI-QUARKS

system
ANTI-COLOR




Experimental confirmation
Standard Model of Elementary Particles

three generations of matter Interactions J force carriers
| ""“::“‘” | (Eeacas) Status in 2000: all gauge bosons, quarks,
I wy e —— —— and leptons particles have been
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Last piece of the puzzle

Standard Model of Elementary Particles

Interactions / force carriers
(bosons)

three generations of matter
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Last piece of the puzzle

Standard Model of Elementary Particles

three generations of matter Interactions J force carriers
{termions) (bosons)
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Last piece of the puzzle

Standard Model of Elementary Particles

three generations of matter Interactions / force carriers
{termions) (bosons)
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SPARTICLEZ 0

e Last missing piece =

N

$10.49 ...

* Higgs mechanism was proposed in the
1960’s by Peter Higgs and Francois

Englert to explain how particles get

their mass

* Higgs field permeates the universe

 New particle predicted, the Higgs boson




Recipe for Higgs boson discovery

Ingredients

e One theoretical prediction

* One high energy particle accelerator
* Two all-purpose particle detectors

o 7,000 scientists, engineers, and students
from over 40 countries and nearly
400 institutes HIGGS BOSON

Baking Time
Approximately 5 decades
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July 4, 2012: Higgs Boson discovery!

Englert and Higgs receive the 2013 Nobel Prize in Physics
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Standard Model of Elementary Particles
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Experimental Methods




Quantum Play-Doh

How do we detect sub-atomic particles that are far too small for us to see?

-> Particle physics is all about indirect detection.

Particle Collison Detector Particles to discover

» Using your paper clip, try to figure out what is in your Play-Doh
e No peeking!!
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Quantum Play-doh

» Using your paper clip, try to figure out what is in your Play-Doh

* No peeking— only indirect detection is allowed!

‘What particle is hiding in your quantum play-doh?
A. Rod

37%

B. Screw

C. Nut

D. Other?




Quantum Play-doh

o After collecting the data, the big question is

Does the data agree with what we expected?

If YES: Hurray! The Standard Model works!
If N‘%‘): Rod Hurray! We found evidence for new physics!
PREDICTION OBSERVATION
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Quantum Play-doh

o After collecting the data, the big question is

If YES:
If NO:

Does the data agree with what we expected?

Hurray! The Standard Model works!

Hurray! We found evidence for new physics!
PREDICTION OBSERVATION
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Accelerators

All particles have wave
properties

We need to use particles
with short wavelengths to
get detailed information
about small things

A particle’s wavelength is
inversely proportional to its
momentum

Higher momentum means

we can probe smaller scales!

Sizes and distaree scales

wim
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Large Hadron Collider

e 17 miles in circumference

 World’s largest and highest
energy hadron collider

» Collides protons at

99.999 999 99% the
speed of light!

e 13 TeV center of mass
energy

e Beats the previous record
held by the Tevatron at
Fermilab
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Large Hadron Collider

e 17 miles in circumfierence

 World’s largest and highest
energy hadron collider

Winfi

» Collides protons at

99.999 999 99% the P
speed of light! : oS e

e 13 TeV center of mass
energy

e Beats the previous record
held by the Tevatron at

Fermilab rth .'..;ror::.. \—/ ’WW-”J'; ;n . 9
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27 km in circumference
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E = mc2

* How can we use protons (mass = 1 GeV) to
study the properties of particles with higher
masses?’

-> When we collide protons that each have
6.5 TeV of energy, a lot of that energy (E)
gets converted into mass (m)

* FEach collision between accelerated particles is
called an EVENT

* Many particles are created in an event

* Most decay immediately into new stable

particles



E = mc2

* How can we use protons (mass = 1 GeV) to _% %

study the properties of particles with higher
masses?

-> When we collide protons that each have
6.5 TeV of energy, a lot of that energy (E)
gets converted into mass (m)

* FEach collision between accelerated particles is
called an EVENT

* Many particles are created in an event

* Most decay immediately into new stable

particles
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How a Higgs boson decays

* 1 in 10 billion collisions will contain a Higgs boson

» Higgs bosons decay to other particles immediately after they are produced. Each
possible way is called a decay channel

Higgs—b +b (b quark and its antiquark)
Higgs— 1" + 1~ (T lepton and its antiparticle)
Higgs—7y + vy (two photons, also called gammas)

Higgs— W'+ W~ (W boson and its antiparticle)
Higgs—Z? +Z0  (Two Z bosons)

» Different strategies and tools are used to search for the Higgs in each of these
channels
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How to find a Higgs boson
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How to find a Higgs boson
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The Mass Histogram

 For H to ZZ decays, end up with 4 leptons in

the final state

* The four possible decay product combinations
could come from the decay of a Higgs boson

or from the decay of other processes

(background)

e Need to look at a large number of events and
plot the number of times each value of the
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Time Evolution of Higgs Boson Data
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Time Evolution of Higgs Boson Data
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Results if no Higgs
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Results with Higgs
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July 2012 Results
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July 2012 Results
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Summary of what we learned

 The Standard Model is the most complete
explanation of fundamental particles and
their interactions to date

* The building blocks of matter are —— Carriers
quarks and leptons ( down ) cange | bowwm | : ?F—y'“

__| Z boson | photon

P — —

H
Hizgs boson “r g

W boson f.l“'»‘"

* There are force carrier particles
(bosons) associated with each force

* The Higgs mechanism is responsible for
the mass of the particles
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What next?

Many things left to discover and understand!
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What next?

Many things left to discover and understand!
* Why is there so much more matter than antimatter in the universe?

 Can we find evidence for any new particles, such as dark matter particles or
supersymmetric particles?

« Why do the different generations of quarks and leptons have such different masses?

* Why is gravity so much weaker than the other fundamental forces?

We could find the answers to these questions, or discover something totally
unexpected!




If | knew what |
was doing,

it wouldn’t be
called research.




Backup




Events / GeV

Data - Fit

4500

4000
3500
3000

2500
2000

1500
1000
500

200

200~
100

-+- Data

— Background-anly

110

Vs =7 TeV J.Ldt=0.02fb‘1 Apr 18, 2011

120

ATLAS Preliminary
H »yy channel

130

140

150

60
M. [GeV]

51



Events / GeV

Data - Fit

4500

4000
3500
3000

2500
2000

1500
1000
500

200

200~
100

-+- Data

— Background-anly

110

Vs =7 TeV J.Ldt=0.02fb‘1 Apr 18, 2011

120

ATLAS Preliminary
H »yy channel

130

140

150

60
M. [GeV]

51



The ATLAS Detector @ the LHC
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The CMS Detector @ the LHC




