

Physics of Particle Detectors

Mandy Kiburg Saturday Morning Physics 24 October 2020 What are we trying to learn about?

• What are the building blocks of nature?

• How do particles interact?

• Why is there more matter than antimatter?

• What is dark matter?

• What is dark energy?

🌫 Fermilab

How are we going to answer these questions?

So – what is our tape measure?

- We want to look at something very very small and see if it is made of smaller things. We also want to see how two small particles interact.
 - Can we use a microscope?
 - Best scanning electron microscope can see something as small as 0.2 nanometers (0.000000002 meters)
 - Smallest object human eye can see is a few microns (0.000001 meters)
 - The Bohr radius of hydrogen atom is
 0.0000000000053 meters (53 picometers)

How do we look at such small objects?

How do we look at such small objects? Collisions

- To break down these particles, we also need a ton of energy and shoot them at each other or targets.
 - Accelerator Lecture (Cindy Joe)

In Other Words

In Other Words

In Other Words

smbc-comics.com

We only see the end products of the collision

You've seen these!

D0 Detector

What will be in those collisions?

- **Full Intro Lecture on 10/17**
- Standard Model
 - Matter is made of quarks and leptons
 - Particles communicate through the 4 force bosons shown
- Four forces
 - Electromagnetic
 - Weak
 - Strong
 - Gravity

What theory tells us

• Theory tells us that a quark and antiquark interact via a W boson and produce a set of particles.

A little more realistic picture

• We send a proton/antiproton towards each other

shutterstock.com · 1072166693

What we actually see

So Many Questions

What do those lines mean?

Why are they curving?

- What do the circles mean?
- Why are some areas black?

• How do we even know what we're looking?

How do we identify particles?

• In biology and chemistry, we have classification schemes

Period names from around the world

86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Tm	Af	Ar	Csiv	Rg	Мо	Rf	Mw	Tf	Iv	Ds	Ht	Aw	Tb	Cd
Time of the month	Aunt Flo	Aunt Rose	CSI: Vagina	The rag	On the moon	Red flag week	Moon week	The flow	Inconvenient visitor	Dotty spotty	High tide	At war	The beast	Calendar days
101 Rd	102 Pi	103 P	¹⁰⁴ Mn	105 Mo	106 Th	107 LW	108 Scw	109 Sc	110 Me	Jw	112 Gt	113 Bl	114 Gf	115 CC
Red devil	Got the painters in	Period	Mensies	Monthlies	Things	Leak week	Scarlet wave	Scarlets	Menstruation	Jam week	Girltime	Being a lady	Girl Ru	Crimson curse

How can we identify particles?

- We know that particles have a unique set of numbers that define them.
 - Mass, charge, etc.
- Momentum conservation

🌫 Fermilab

- Momentum before is the same as the momentum after a collision
- Energy conservation
 - Same energy before and after collision
- We can observe electromagnetic interactions and strong interactions
- We can tell types of particles based on their *lifetime*
 - Muons, kaons, pions all decay at different times and into different things

Add tools to our toolbox

- Motion in a magnetic field
- Ionization
- Scintillation
- Calorimetry

shutterstock.com · 391516525

Motion in a uniform magnetic field

 Try this at home!! The tension in the string is keeping the ball moving in a circle

Motion in a uniform magnetic field

• Remove the person, add in a magnetic field.

Uniform circular motion in a magnetic field

- $F = \frac{mv^2}{r}$: Force in a circular motion
- F = qvB: Force on a particle in a uniform magnetic field

$$F = \frac{mv^2}{r} = qvB$$
$$r = \frac{mv}{qB}$$

 We can measure the radius of curve particles make to learn about their momentum

Ionization

• Definition: Ionization is the removal or addition of an electron to an atom to make it positive or negative.

Fermilab

How does this help us?

- After ionization, you are left with a free electron (negative) and a positively charged atom
- Add an electric field

How does this help us?

- After ionization, you are left with a free electron (negative) and a positively charged atom
- Adding an electric field we can separate the different types of charges.
- Electrons will leave a charge on a sensor that we can read out.

Scintillation Light

 Sometimes, in some materials, a particle moving through does not knock out an electron

What can we do with scintillation light?

- The photon emitted will have a very specific energy
- We can count the number of photons that go to our readout tools

Fundamental Interactions

- We'll study 2 types Electromagnetic interactions and nuclear interactions
 - Particles are either going to interact with detector material electrons or with it's nucleus

芬 Fermilab

Types of particles we can see

- Electrons (charged) and photons (no charge)
 - Interacts with free electrons in atom
- Muons (charged)
 - Interacts with free electrons in atom
- Pions and protons (charged), kaons (charged)
 - Interacts with nucleus
- Neutrons (no charge)
 - Interacts with nucleus

Let's build detectors!

- We have a well stocked toolbox
 - Theory tells us which particles we can see at the end of the collision
 - 3 basic processes (motion in a magnetic field, ionization, scintillation)
 - Conservation laws (final state will tell us something about the initial state)

Go back to our car crashes

 In order to fully understand an interaction, we should use multiple detectors. There are 2 classic geometries: fixed target and collider.

Collider Geometry

Particle Interactions

- Trackers (momentum, charge measurements)
 - Electromagnetic interactions
 - Scintillation (excitation)
 - Ionization
- Calorimeters (energy, mass measurements)
 - Electromagnetic interactions
 - Ionization
 - Strong interactions
 - Hadronic showers
- Cherenkov Detectors and Time Projection Chambers
- Let's look at these one by one

Break down into a slice

• Put least amount of material and fastest detectors near the interaction point, build out from there.

🛟 Fermilab

Tracking Detectors

- Used for:
 - momentum measurements (p)
 - charge determination
 - particle production position (primary and secondary)
- Main Concepts
 - Motion in Magnetic field
 - Ionization
- What are trackers made out of?
 - Gaseous detectors
 - Silicon detectors
 - Scintillating fiber trackers

Tracking detectors

- Measures the momentum, direction of the particle, and charge
 - It only sees charged particles
- Usually the first detector to see the collision
 - Inside a magnetic field
- Will show the direction of a particle without hindering it
- Will also show if other particles are created after the collision

🛠 Fermilab

- Called a "secondary vertex"

Gas based trackers

- Basic construction: Gas filled region (tube, big containter) with signal wires or plans.
- Low mass (gas!)
- Works with ionization and electric fields

Silicon trackers

- Very important radiation hard!
- Can tell trajectory of particles very precisely
- More material than gas trackers
- Works via ionization

CMS Silicon Tracker

Scintillating Detectors

• Can be used in a variety of situations.

Calorimeters

- Used for:
 - Energy measurements
 - Mass measurements
- Main concepts
 - Ionization
 - Nuclear interactions = "showering"

Lead Tungstate crystals

- What type of calorimeters are there?
 - Electromagnetic calorimeters
 - Hadronic calorimeters
 - Sampling vs homogeneous

How does a calorimeter work?

- Particles have gone through the trackers with only minimal energy loss (they haven't really slowed down).
- If they never stop- they can leave our detectors and we can't tell the difference between them or how much energy they have.
- So we stop them.
 - Deposit all their energy
 - We can tell a lot from *how* they stop

Detector slice

• Calorimeters can cause particle to shower. Where this occurs tells us something about the particle there.

Fermilab

How do calorimeters stop particles?

- Particles will interact with different materials in understandable ways
 - We put specific materials in their path

Electromagnetic Calorimetry

- Electromagnetic calorimeters measure the electrons (positrons) and photons that interact with the electrons in the atoms
 - Used to determine photons and electrons

JV217.c

🛠 Fermilab

Figure 5: Schematic development of an electromagnetic shower.

Hadronic Calorimetry

- Hadronic calorimeters
 - Contain both an EM component driven by EM interactions and a hadronic component driven by Strong interactions
 - Can detector neutral particles and "see" missing energy

43 10/24/20 M. Kiburg I Saturday Morning Physics

Containing the shower

- In both Electromagnetic and Hadronic calorimeters, we want all the information from a particle to stay in the detector
 - This drives the size of the calorimeter
 - More energy = harder to stop

CMS Hadronic Calorimeter

Calorimeter summary

- Calorimeters are part of the reason detectors are so huge.
 - Takes a lot of material to stop and contain the traversing particles
- Two main types
 - Electromagnetic
 - Hadronic
- Homogeneous calorimeter
 - Typically crystal
 - The whole thing is active
- Sampling calorimeter
 - Absorbing material + active readout layer

🛠 Fermilab

Cherenkov radiation

- The fastest speed anything can go in vacuum is the speed of light
- But in some materials, particles can go faster

Cherenkov Radiation

- The velocity (u in this picture) will depend on mass of the particle
- Angle will also change depending on velocity, mass, and material used for detector

Liquid Argon Time Projection Chambers

• DUNE! Next big neutrino detector

Event display from LArIAT

Fermilab

IONISATION

Energy

48 10/24/20 M. Kiburg I Saturday Morning Physics

DAQ and electronics

- Okay, the particles have interacted with our detectors now what?
- Final product is
 - A number: mass of the Higgs = 125 GeV
 - A plot:

🛠 Fermilab

• How do we get from trackers and calorimeters to this?

Data Acquisition Process

Detector signals

- Trackers, calorimeters, TPCs all have "eyes"
 - Photomultiplier tubes
 - Silicon Photomultiplier tubes
 - Sense wires that collect charge

Example – Photomultiplier Tube

150 ps

360 ps

Signal processing

- Shape
 - Look at the shape of the signal will tell you important information
- Amplify
 - Make a small signal large enough to see
- Discriminate
 - Only look at signals above a certain threshold.

Processing signals

We've turned those particle interactions into electronic signals

Trigger systems

- Take the input from all the sub systems and detectors
 Make a decision: keep or not?
- Usually multi-level
 - Make decisions based on which detector sub systems have events.

з.

HF

Calorimeter Trigger

HCAL ECAL

Muon Trigger

CSC

DT

RPC

Detector Readout – Put it all together

- Detectors have "eyes"
- Turn the signals into something readable by electronics
- We trigger on only what we want to keep
- Finally Data is stored into a system and later retrieved for analysis
 - Also used in data quality monitoring.

Digital Data Acquisition System

So Many Detectors

- Particle detectors are used in many fields, not just particle physics
 - Medical physics, security, studying the pyramids

Outlook – What is up and coming

- As we move ahead, things get more complicated!
- High Luminosity Large Hadron Collider
 - lots of radiation
- DUNE
 - Large amount of liquid argon

Summary

- The physics of particle detectors comes down to matter interacting with matter
 - Could spend a lifetime studying these different effects
- What I want you to remember:
 - Charged particle interactions are our main source of information
 - Ionization
 - Scintillation
 - Use energy loss to determine what type of particles you are viewing
 - Interact with atom's electrons
 - Interact with the atom's nucleus

Gas Detector Types

Tracking Summary

- Okay, so we've learned how to tell the *charge*, what *direction it went*, and it's *momentum*
- Three types of tracking detectors: gaseous, solid state, scintillating
- Gaseous detectors rely on charge multiplication
 - Gas choice is a bit of "magic"
 - Covers large areas "cheaply" with sensitive materials
- Solid state/scintillating
 - Fine granularity, commercially produced
 - Can have problems with too much material in the beamline

